
Supporting Hybrid Virtualization Orchestration
for Edge Computing

Giovanni Bartolomeo
TU Munich
Germany

giovanni.bartolomeo@tum.de

Patrick Sabanic
TU Munich
Germany

patrick.sabanic@tum.de

Nitinder Mohan
TU Delft

The Netherlands
n.mohan@tudelft.nl

Jörg Ott
TU Munich
Germany

ott@in.tum.de

Abstract
Microservice architectures allow developers to decompose their
applications into independently deployable functional blocks, each
with its own requirements. In order to support a wide range of
constraints, service virtualization can be customized across mi-
croservices but is typically homogeneous within a cluster. As there
is no clear one size fit all approach, we can improve resource utiliza-
tion and performance by using virtualization as a new dimension
in orchestration, especially in edge computing environments. For
instance, Unikernels represent a lightweight virtualization technol-
ogy that offers a performant alternative to traditional containers.
While we find different studies analyzing and comparing these vir-
tualization technologies, (a) the performance results might vary
when including the overhead of the orchestration platform, and
(b) it’s not trivial to select the perfect virtualization technology for
an entire cluster. In this paper, we explore the benefits of hybrid
container-unikernel deployments by extending an orchestration
framework for edge computing to allow for seamless mixing and
matching of both technologies. Our evaluation shows how hybrid
deployments can lead up to 44% CPU reduction cluster-wide while
there are scenarios where containers are still preferable.

CCS Concepts
• Computer systems organization→ Cloud computing; • In-
formation systems→ Information systems applications.

ACM Reference Format:
Giovanni Bartolomeo, Patrick Sabanic, Nitinder Mohan, and Jörg Ott. 2025.
Supporting Hybrid Virtualization Orchestration for Edge Computing. In
The 8th International Workshop on Edge Systems, Analytics and Networking
(EdgeSys ’25), March 30-April 3, 2025, Rotterdam, Netherlands. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3721888.3722093

1 Introduction
In the landscape of modern computing, microservice architectures
have increasingly become the standard approach for designing
highly scalable and available applications. Microservices are typi-
cally deployed in containers [13, 28, 54]. With the OCI standardiza-
tion [7], containers are nowadays decoupled from the underlying
runtime, allowing for seamless portability across different envi-
ronments and reusability of common functions – like nginx web

This work is licensed under a Creative Commons Attribution 4.0 International License.
EdgeSys ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1559-4/2025/03
https://doi.org/10.1145/3721888.3722093

servers, Redis, etc. This calls for a new dimension in orchestration,
where the virtualization technology can be chosen based on the
service requirements. Unfortunately, state-of-the-art still consid-
ers virtualization coupled with infrastructure provisioning. Edge
computing significantly alters this assumption, given its inherently
heterogeneous infrastructure offering variations in (CPU/memory)
hardware, OS support, etc. [39, 45]. Previous studies highlight the
operational overheads caused by cloud-native assumptions at the
edge [15, 41] and benefits of lightweight virtualization in conjunc-
tion with containers [21, 29]. Unikernels are a good candidate for
the edge because of their small footprint, faster instantiation, im-
proved performance, and flexibility [35, 53]. However, despite ad-
vancements in unikernel toolchains, such as Unikraft [31], which
allows porting existing Linux applications, the ecosystem does not
support a wide range of applications and driver functionality [25].
Moreover, as shown in the remainder of this paper, unikernels are
not the best choice for all services at all times. We envision a future
where, given a standardized packaging format like OCI, the runtime
can be chosen dynamically based on application requirements, with
the orchestration platform effectively becoming a middleware for
multi-virtualization setups. Take, for example, a stream-processing
video analytics pipeline, which can include several GPU-intensive
services that operate more suitably as containers with full-fledged
OS providing complex driver support [55]. However, services within
the pipeline, such as load balancers, may be more performant as
unikernels using a hypervisor as resource multiplexer [29, 33, 36].
Hybrid virtualization also enables a gradual transition of complex
containerized applications to unikernels – as the build toolchain
evolves to support more system calls and libraries [1, 6, 23]. While
several papers have empirically evaluated and compared the per-
formance of different isolation technologies [29, 33, 49], they do
not consider (i) the overheads of compatibility layers which al-
low these virtualizations to operate on common hardware and (ii)
orchestration overhead for managing deployments with different
virtualizations at runtime.
This paper explores the feasibility of container-unikernel hybrid
orchestration. Our contributions are as follows.
(1) We extend Oakestra [15], a lightweight orchestration frame-
work for edge computing. We implement a compatibility layer that
allows Unikraft [31] unikernels to behave as containers from an
orchestration perspective. We extend the control plane to aggregate
clusters’ virtualization information and the scheduling workflows
to consider virtualization requirements. We introduce service hot-
swap to change the service’s virtualization technology at runtime.
(2)We evaluate the suitability of hybrid virtualization orchestra-
tion via real-world application pipelines. Specifically, we dissect the
overhead of the compatibility layer performing cross-deployment of

https://doi.org/10.1145/3721888.3722093
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721888.3722093

EdgeSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Giovanni Bartolomeo, Patrick Sabanic, Nitinder Mohan, Jörg Ott

containers via runc, unikernels, and gVisor secure containers. Our
results showcase the potential for hybrid virtualization, achieving
up to ≈ 44% CPU usage reduction in our cluster.

2 Background and Related Work
Due to their small memory footprint (approx. a few MB) and re-
duced system call dependencies [32], unikernels offer faster boot
times (≈ 10×) compared to containers [26, 31] and are easy to scale
and migrate [37, 40, 51]. The shared application and kernel address
space allows all code to run in the same CPU privilege domain,
which improves performance by avoiding application and kernel
context switches [52]. Early unikernel frameworks, such as Mira-
geOS [4], required developers to write applications from scratch.
However, in recent years, unikernels have evolved as a capable
alternative to containers. Unikraft [31] provides a streamlined ap-
proach to building and porting existing Linux applications. The
toolchain provides a high degree of POSIX compatibility (≈ 160+ out
of 224 syscalls required for popular Linux install [34]). EVE-OS [1],
a Linux Foundation project, is a universal, vendor-agnostic OS for
edge computing hardware (including embedded devices) and adds
native support for both containerized and unikernels workloads.
Container runtimes (e.g., Firecracker [2], gVisor [3]) enhance con-
tainer security and isolation by executing them as para-virtualized
microVMs over qemu/kvm similar to unikernels. The OCI standards
help supporting both container and unikernel runtimes simultane-
ously [7, 11]. Experimental runtimes like urunc [42] and runu [46]
represent the first steps towards kernel-level compatibility unifying
containers and unikernels [47]. Unfortunately, it is not clear what
the overhead of such compatibility layers is in real-world deploy-
ments, and how they affect the orchestration of services, especially
on constrained hardware at the edge. Edge infrastructure is gener-
ally less powerful and more heterogeneous than cloud datacenters,
often comprising of smaller devices with varying CPU architectures
and capabilities, e.g., Intel NUCs, Jetson Xavier, Raspberry Pis, etc.
As edge computing is often seen as an extension of the cloud, the
majority of orchestration solutions adapt the popular cloud-native
Kubernetes (K8s) framework [19]. Solutions like KubeEdge [20],
KubeFed [24], and MicroK8s [17] modify Kubernetes by simplifying
control-plane operations and removing non-essential components
to make it applicable for edge. On the other hand, Oakestra [12, 15]
rearchitects the orchestration control plane from the ground up
to address the hardware heterogeneity and geographical diversity
in edge infrastructures with minimal overhead. In Oakestra, com-
putational devices (leaf nodes) are grouped into (logical) clusters
managed by local cluster orchestrators (see fig. 1). The worker node
includes NodeEngine component for managing service deployment
and operation and NetManager for network communication. Each
cluster orchestrator is responsible for keeping track of fine-grained
resource and service management within its cluster. The root orches-
trator acts as an “orchestrator of clusters” and the point-of-contact
of developers to deploy their applications.
Unfortunately, all state-of-the-art orchestration frameworks treat
virtualization as a cluster constraint. We finally have an opportunity
to exploit virtualization as a dimension to improve resource uti-
lization and application performance. In [38], the authors examine
approaches for orchestrating sandboxed containers as microVMs

OS
Hardware

containerd qemu
Node Engine Net

Manager

Node 1

qemu

Node 2

Cluster 1 Orchestrator

virt:
unikernel.arm

Node 3

containerd

virt:
 - unikernel.x86
 - container.x86

virt:container.x86

virt:container.x86

virt:
 - container.x86
 - unikernel.arm|x86

Cluster 2 Orchestrator

Root Orchestrator

SchedulerCluster DB

Cluster
Manager

Service
Manager

SchedulerRoot DB

System
Manager

Service
Manager A

PI
D

as
h

x86

arm x86

deployment
descriptor v2.1

Dev

Figure 1: Oakestra with hybrid unikernel support.

over qemu/kvm via extensions to K8s. FADES [21] leverages Mira-
geOS [4] unikernels to deploy application microservices in Xen-
bootable images suitable for edge devices. However, arguably (i)
not all applications perform better as unikernels, and (ii) the virtu-
alization technology must be dictated by application requirements
and not by the infrastructure availability alone.

3 Orchestration Support
In our exploration, we extend the Oakestra [12, 15] orchestration
framework to support hybrid container-unikernel deployments and
measure the overheads and benefits of such hybrid virtualization
setups. We choose Oakestra due to its lightweight implementation
and extensible design, which allows us to integrate unikernels or-
chestration metrics alongside containers with minimal changes and
reduced overhead. We use Unikraft [31] as the unikernel runtime
for our experiments, as it provides a wide range of unikernel con-
figurations and supports a variety of applications. The proposed
architecture provides an extensible interface that is used to evaluate
unikernel virtualization as an additional orchestration dimension,
but that easily allows for further runtimes support and optimal
virtualization selection.

3.1 Hybrid Service Deployment
To enable hybrid virtualization support, we must ensure that the
worker nodes’ hardware can support container and unikernel exe-
cution. Oakestra supports integration of new runtimes via (a) using
the runtime dispatcher interface or (b) integration to containerd
thanks to OCI runtime-spec compatibility. Initial experiments
with runu [46], anOCI-compatible runtime for containerd, showed
inconsistent behavior. This runtime is currently under develop-
ment [47], so misalignments with the latest Unikraft versions are
expected. Moreover, managing runu as OCI runtime involves the
additional overhead of the containerd middleware managing the
hypervisor, which can be avoided by directly interacting with qemu.
To overcome this, we design and implement a Unikernel Runtime
Abstractor component in Oakestra’s NodeEngine, which instead
of controlling unikernels via containerd, adds abstractions for
directly managing and monitoring Unikraft services within the or-
chestration framework (see fig. 2). This approach, while Oakestra-
specific, is not replacing the OCI runtimes such as runu/urunc.
These runtimes can be easily integrated as containerd runtimes
when they mature, but at the cost of additional overhead. Uniker-
nels (and the abstractor) are only enabled on machines supporting

Supporting Hybrid Virtualization Orchestration for Edge Computing EdgeSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

NodeEngine

Deploy

Delete

Runtime
Dispatcher

Status

Unikernel
Runtime

Abstractor

Container
Runtime

Abstractor runtime
.sock

Net
Manager

Runtime

JobUpdate

Jobs

State
Updater

Runtimes

Job

Figure 2: Unikernel support (in red) in Oakestra node engine
component at the worker machine.

qemu and kvm targets (e.g., node 1 and 2 in fig. 1) while containers
are enabled only in nodes supporting containerd. The Unikernel
Runtime Abstractor (i) manages the lifecycle of unikernels and
interacts directly with qemu for the virtualization, (ii) performs the
downloading and unpacking of kernel images, and (iii) binds a rou-
tine to read the qemu qmp socket interface and update the internal
service status (running/paused/failed) to the cluster orchestrator.

3.2 Resource Management and Scheduling
As shown in fig. 1, typical edge deployment with Oakestra may
include worker nodes with heterogeneous hardware architecture
and runtime target support. While some nodes execute both con-
tainer and unikernel deployments (e.g., node 1), others only support
either one of the two (e.g., node 2 or 3). At worker startup, the
NodeEngine checks the nodes’ CPU architecture and virtualization
support. Then, it advertises its runtimes to the associated cluster or-
chestrator as virt tuple (<virtualization,architecture>). In
Oakestra, the cluster orchestrator hides the internal infrastructure
details of its workers by only sending the aggregated cluster statis-
tics to the root orchestrator [14]. We extend the control plane to
support multi-virtualization by propagating the set of all available
virtualization and hardware architecture combinations in each clus-
ter (see Cluster1 → Root in fig. 1). Further, we extend the Oakestra
schedulers to consider virtualization during scheduling. Specifi-
cally, the service schedulers, before they apply one of the available
scheduling policies [15], they first prune the most suitable clus-
ter(s)/worker(s) list based on the available virtualization options
matched with SLAs requirements.

3.3 Virtualization Hot-Swapping
We extend the control plane with a runtime switch functional-
ity for stateless applications supporting multiple virtualization
technologies. Suppose service1.instance1 is deployed as a con-
tainer but a unikernel implementation is available. By trigger-
ing the hot-swap, the control plane performs the deployment of
service1.instance2 unikernel alongside the first instance. The
network component gradually balances and shifts the traffic from
the container to the unikernel instance. Once the traffic migration
is complete the first containerized instance is removed.

3.4 Inter-Service Networking
To achieve agile hybrid virtualization, it is important that the or-
chestrated services can interact with both unikernel and container-
based services without additional overhead. Oakestra utilizes a
semantic overlay network to enable multi-cluster container net-
working and load balancing. Each service is allocated IP addresses
mapped to different load-balancing strategies across available in-
stances. The NetManager interprets packets to/from a semantic
address and re-assigns them to the correct instance IP address –

forming a tunnel between communicating services. To achieve sim-
ilar seamless networking between containers and unikernels (and
across unikernels), we extend the NetManager to provision (i) a
network namespace for unikernels and (ii) a local namespace IP
address that can be used to translate network packets irrespective
of the virtualization target. Unlike containers, unikernels do not
share the host kernel but require a dedicated network stack. We
overcome this by connecting a macvtap interface in bridge mode
directly to the veth of the service’s network namespace (see <s2
namespace>). The runtime abstractor is providing such interface
to qemu for the unikernel startup. With this extension, unikernel
and container namespace IP addresses are provisioned using the
same Oakestra mechanism, giving out-of-the-box support for se-
mantic load balancing and service discovery for both supported
virtualization techniques.

4 Application Performance.
We evaluate hybrid virtualization orchestration for two application
use cases. Firstly, we focus on a typical Edge/IoT sensor network
application composed of commonly re-used services – web server,
database, and message broker – and care for high throughput and
availability (see §4.1). Our second application is a latency-critical
augmented reality (AR) pipeline, which (structurally) is deemed
as the killer application for edge computing [10] (see §4.2). For
each use case we measure the applications’ end-to-end latency and
throughput, as well as the total system CPU consumption, including
the application, the orchestration system, and compatibility layers
usage. Note how memory usage is not reported as unikernel mem-
ory is fixed and depends on allocation at qemu startup. We conduct
experiments on a heterogeneous hardware cluster inter-connected
with 1 Gbps ethernet (< 1 ms RTT). The cluster includes (i) 2×
servers S1 with two AMD EPYC 7302 CPUs, two NVIDIA A40

GPUs, and 264 GB memory and S2 equipped with Intel i9 CPU,
two NVIDIA RTX 2080 GPUs, and 128 GB memory; (ii) X1 1×
Intel NUC with Intel i5-6260U 4 core CPU and 16GB DDR4 memory;
(iii) X2 1× APU with Intel i5-8400T 6 core CPU and 8GB DDR4
memory and (iv) Pi 2× RPi 4 with ARMv8 Cortex-A72 4 core CPU
and 8GB DDR4 memory. We install Oakestra components on all de-
vices and orchestrate them as a single cluster to avoid inter-cluster
scheduling overheads.

4.1 Hybrid Edge/IoT Application
To evaluate the impact of hybrid virtualization, we deploy a bench-
mark application that emulates the architecture of a real-world edge
IoT sensor network commonly used within smart-factories [18] and
smart-cities [30] (see fig. 7a). The distributed sensors collect data
and forward them to the nginx proxy. The proxy load balances the
data to the analytics service, which processes the data and forwards
it to a pipeline of key-value store, message broker, and web server
microservices for analytics and storage operations. We first bench-
mark the baseline container vs. unikernel performance for all three
services and finally compose them into an end-to-end pipeline with
two additional business logic services (analytics and store manager).
We further evaluate the impact of hybrid virtualization on overall
resource usage (including orchestration overhead) by hot-swapping
the virtualization target within the pipeline.

EdgeSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Giovanni Bartolomeo, Patrick Sabanic, Nitinder Mohan, Jörg Ott

0 10000 20000 30000
Requests per second

Pi

X1

Unikernel Container Elfloader

0 10 20 30 40
CPU% utilization

Pi

X1

Figure 3: Redis.

0.2 0.4 0.6 0.8
Latency (ms)

0.0

0.5

1.0

C
D

F

Unikernel Container gVisor

0 20 40
CPU%

Figure 4: Nginx.

1.0 1.5 2.0 2.5 3.0
Latency (ms)

0.0

0.5

1.0

C
D

F

Unikernel Container

0 2 4 6
CPU% Total Service

Figure 5: MQ Broker.

0 20 40
CPU Utilization

Pi

X1

X2

Unikernel Container

0 50 100
End-to-End Execution Time(ms)

Pi

X1

X2

0 1 2 3
Encoding Time (ms)

Pi

X1

X2

0.00 0.05 0.10 0.15
Processing Time (ms)

Pi

X1

X2

Figure 6: Augmented Reality Pipeline.

Nginx

Broker

Store
ManagerRedis

Se
ns

or
 N

et
w
or

k

Analytics

(a) Architecture.
130 190 250 310Time(s)

5

10

15

C
P

U
%

Container Hotswap Hybrid

3 6
Latency(ms)

0.0

0.5

C
D

F

5 10
CPU%

0

.5

C
D

F

(b) Performance.

Figure 7: Edge/IoT Application.

4.1.1 Key-value datastore. Redis is a well-known in-memory
key-value store.We usedUnikraft’s open-source implementation [8]
and repackaged the same Redis binary as a Docker container to en-
sure similar functionality regardless of virtualization. Additionally,
we also created a unikernel image from the native Redis binary us-
ing Unikraft x86 elfloader. The elfloader allows running most
of the traditional Linux executables in Unikraft. In the future, this
method is likely to be employed for porting Linux applications
without bespoke unikernel implementations. Note that unikernels,
currently limited in multi-core operation capabilities, align well
with Redis’ predominantly single-core architecture. Figure 3 shows
performance results from X1 (x86) and Pi (ARM) machines. The
CPU usage includes the application, the OS, the orchestration layer,
and the virtualization overhead. We find that on x86 platforms,
the native unikernel variant outperforms the containerized Redis
by approximately 20% and 23%, respectively, likely due to saving
the cost of syscalls in unikernels [31]. In contrast, for ARMv8, the
containerized Redis performs 20% better than the unikernel-native
implementation. The containerized Redis shows 60% ↑ and 7%↑
CPU usage respectively on x86 and ARMv8 in comparison. Uniker-
nel under-performing on ARM is common and caused by lack of
stable support for this architecture [9].

4.1.2 Web Server. Nginx [5] is a popular production-grade web
server and proxy application. We deploy 50 instances of nginx mi-
croservice on X2 (x86) and perform 500 calls per millisecond from
1× stress client using round-robin load balancing. We compare the
performance of nginx deployed as unikernel, as a container, and
as a sandboxed container using gVisor [3]. The main difference
between default container deployment, managed by runc [43], and
gVisor, is the additional layer of isolation provided by the latter via
syscall interception. Ultimately, unikernels and sandboxed contain-
ers have a comparable degree of isolation [38] – critical for services
like nginx. Figure 4 shows how containerized nginx obtains the low-
est latency overall, with a median of 0.25ms per request. Unikernel
and gVisor show higher latency, with 0.34 ms and 0.35 ms me-
dian latencies, respectively. gVisor shows a 22% higher tail latency

at the 90𝑡ℎ percentile compared to unikernel. The latency deficit
for unikernels is likely due to the additional macvtap interface re-
quired to bridge the qemu to the network namespace. For gVisor,
the overhead is due to its isolated network stack (netstack) inside
Sentry [27]. Despite networking overhead, unikernel nginx shows
lower resource consumption with 31% ↓ CPU usage compared to
the container and ≈ 3.2× ↓ compared to gVisor.

4.1.3 Message Broker. Microservice applications rely on pub-
lish/subscribe message broker systems, such as RabbitMQ [50], for
scalable communication and data exchanges. We found that popu-
lar broker frameworks are dependent on several external libraries,
which necessitated us to build our own simple broker system and
export it as a single binary. We package the broker as a container
and unikernel using the Unikraft elfloader compatibility layer.
Figure 5 presents the observed latency and the CPU consumption
when the broker is deployed on X1 . The CPU consumption mea-
surements shows the CPU used by the broker service and the total
CPU used by the system, including the orchestration system, the OS,
etc. The latency includes the end-to-end process, from publishing a
message to the broker to receiving its acknowledgment from the
subscriber. We find that the unikernel broker observes 15% higher
latency than the containerized version. However, its CPU usage is
also lower (≈ 37%). Both virtualization targets are resource-efficient
and consume < 10% total CPU. The data indicates that unikernels
experience higher latency overhead, a result we again believe is
linked to the overhead of network virtualization.

4.1.4 Hybrid Orchestration. We now compose the Redis, ng-
inx, and message broker services into an IoT pipeline and evaluate
the impact of hybrid virtualization on the end-to-end application
performance (see fig. 7a). We deploy 100 containerized sensor nodes
emulating a distributed sensor network. The sensor data is balanced
between 10 nginx proxies (acting as pipeline entry points) and then
pre-processed by analytics. The analytics service sends the data to
the message broker, which can then be accessed by the store man-
ager that stores the received data in the Redis database. We use
x86 machines in our infrastructure (S1 , S2 , X1 , X2) for this
experiment for comparable results across runs.

The time series in fig. 7b shows different deployment stages. At
time 𝑇 = 0, the pipeline is fully containerized. At time 𝑇 = 130,
we begin the hot-swap procedure where unikernel nginx and Redis
are deployed alongside their container variants. The traffic grad-
ually shifts to the unikernels thanks to the Oakestra round-robin
balancing, after which the containers are undeployed. We do not
hot-swap the broker to avoid data flow interruptions due to lost state.
Figure 7b shows that though the hot-swap procedure temporarily
increases the load by ≈ 15%, the hybrid deployment achieves ≈ 44%

Supporting Hybrid Virtualization Orchestration for Edge Computing EdgeSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Detection
Service Tracking

Service
Aggregation

Service

Public
Network

Overlay Network

Figure 8: AR benchmark pipeline architecture.

↓ CPU usage compared to container-only. The hot-swap overhead
is due to the parallel unikernel-container deployment, propagation
of new routing rules, and the gradual shutdown of the containers.
We also observe 5% higher 90𝑡ℎ percentile tail latency during hot-
swap, likely due to the unikernel transition. We find that hybrid
deployments increase latency by 20% in total. The results show
how hybrid orchestration reduces resource consumption and can
be suitable for non-latency-critical contexts.

4.2 Hybrid Augmented Reality Pipeline
We use the AR pipeline from Comb [16], an open-source benchmark
suite for edge computing. The pipeline, shown in fig. 8, is composed
of the following services. Aggregation performs CPU-dependent
video frame translation and resizing operations,Detection uses GPU
to detect and mark objects in frames with bounding boxes, and
Tracking uses GPU to map and track objects across frames. We re-
implement the aggregation service with Unikraft and also package
it as a container. The remaining microservices are unchanged and
are deployed as containers because GPU compatibility is not yet
supported by unikernels [23]. Figure 6 shows the average time re-
quired by the aggregation service to encode a frame (encoding time)
and the internal frame processing OS system calls (processing time).
The figure also shows the total time to traverse the pipeline (execu-
tion time) and the CPU utilization of the aggregation service. The
containerized deployment achieves ≈ 45% lower CPU. We attribute
this to the stress that latency-sensitive and high data-rate services
put on the virtual network devices. The container shows ≈ 10% and
≈ 20% higher encoding and processing times, respectively, com-
pared to unikernel for x86, and up to ≈ 28% and ≈ 70% on ARM. At
the same time, the total per frame end-to-end time shows negli-
gible < ±2% fluctuations. The reduced processing and encoding
time in unikernel aggregation minimally impacts the end-to-end
time, which is dominated by networking, inference, and decoding
time. Our results highlight how latency and throughput-sensitive
services suffer the overhead of unikernel network compatibility
layers, a requirement for all state-of-the-art orchestration systems.

5 Discussion and Future Work
While advancements in toolchains like Kraftkit [48] are enhanc-
ing the portability of applications to the unikernel domain, not
all libraries, drivers, and consequently applications are currently
supported. Moreover, as we show in §4, determining the most suit-
able virtualization for a given application is not straightforward.
Generally, we observed that within an orchestrated infrastructure,
containers are a more efficient choice for network-dominant and
latency-critical applications, while unikernels are better suited for
CPU-intensive applications and scalability, achieving up to 44%
CPU usage reduction in our cluster. It is crucial to recognize that
the real-world performance of unikernels might not always align
with conceptual expectations [22] and aspects such as flexibility,

compatibility and security may be more relevant factors for consid-
ering optimal virtualization choice [44]. Our findings motivate for
joint transparent orchestration of unikernels and containers as well
as the need for a platform that abstracts its complexity. Summing
up, there is no one-size-fits-all approach for service virtualization.

In future extensions, we envision a closer integration between
Oakestra, Unikraft, and qemu to reduce the virtual network bottle-
necks experienced with the unikernels. We also plan to investigate
intelligent scheduling solutions for performance forecasting and a
telemetry-based feedback loop for performance monitoring across
virtualizations from the application to the runtime layer. Moreover,
we plan to integrate cross-virtualization checkpointing to enable
the data migration of stateful applications with minimal loss and
downtime across different virtualization technologies.

Acknowledgments
We thank the anonymous reviewers and the shepherd for their
comments and insights during the review process. This work was
partly supported by the Federal Ministry of Education and Research
of Germany (BMBF) project 6G-Life (16KISK002) and by the Na-
tional Growth Fund through the Dutch 6G flagship project “Future
Network Services".

References
[1] 2024. EVE – LF EDGE: Building an Open Source Framework for the Edge.

https://www.lfedge.org/projects/eve/. Accessed: 2024-01-11.
[2] 2024. Firecracker MicroVM. http://firecracker-microvm.io/. Accessed: 2024-01-

11.
[3] 2024. gVisor - The Container Security Platform. https://gvisor.dev/. Accessed:

2024-01-11.
[4] 2024. MirageOS - GitHub. https://github.com/mirage/mirage.
[5] 2024. nginx - Docker Hub. https://hub.docker.com/nginx.
[6] 2024. NVIDIA GRID vGPU User Guide. https://web.archive.org/web/

20230816105820/https://docs.nvidia.com/grid/latest/pdf/grid-vgpu-user-
guide.pdf. Accessed: 2024-01-11.

[7] 2024. Open Container Initiative. https://opencontainers.org. Accessed: 2024-01-
15.

[8] 2024. Unikraft App for Redis. https://github.com/unikraft/app-redis. Accessed:
2024-01-11.

[9] Ashijeet Acharya, Jérémy Fanguède, Michele Paolino, and Daniel Raho. 2018. A
performance benchmarking analysis of hypervisors containers and unikernels
on ARMv8 and x86 CPUs. In 2018 EuCNC. IEEE.

[10] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík, Krishna Chintalapudi,
Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. 2017. Real-time video
analytics: The killer app for edge computing. computer 50, 10 (2017), 58–67.
https://doi.org/10.1109/MC.2017.3641638

[11] Anjali, Tyler Caraza-Harter, and Michael M. Swift. 2020. Blending Containers and
Virtual Machines: A Study of Firecracker and GVisor. In Proceedings of the 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (Lausanne, Switzerland) (VEE ’20). Association for Computing Machinery,
New York, NY, USA, 101–113. https://doi.org/10.1145/3381052.3381315

[12] The Oakestra Authors. 2023. Oakestra: An Orchestration Framework for Edge
Computing. https://www.oakestra.io/

[13] Giovanni Bartolomeo, Jacky Cao, Xiang Su, and Nitinder Mohan. 2023. Char-
acterizing Distributed Mobile Augmented Reality Applications at the Edge. In
Companion of the 19th International Conference on Emerging Networking EXperi-
ments and Technologies (CoNEXT 2023). Association for Computing Machinery,
New York, NY, USA, 9–18. https://doi.org/10.1145/3624354.3630584

[14] Giovanni Bartolomeo, Mehdi Yosofie, Simon Bäurle, Oliver Haluszczynski, Nitin-
der Mohan, and Jörg Ott. 2022. Oakestra white paper: An Orchestrator for Edge
Computing. arXiv preprint arXiv:2207.01577 (2022).

[15] Giovanni Bartolomeo, Mehdi Yosofie, Simon Bäurle, Oliver Haluszczynski, Nitin-
der Mohan, and Jörg Ott. 2023. Oakestra: A Lightweight Hierarchical Or-
chestration Framework for Edge Computing. In 2023 USENIX Annual Techni-
cal Conference (USENIX ATC 23). USENIX Association, Boston, MA. https:
//www.usenix.org/conference/atc23/presentation/bartolomeo

[16] Simon Bäurle and Nitinder Mohan. 2022. ComB: A Flexible, Application-
Oriented Benchmark for Edge Computing. In Proceedings of the 5th Interna-
tional Workshop on Edge Systems, Analytics and Networking (Rennes, France)

https://www.lfedge.org/projects/eve/
http://firecracker-microvm.io/
https://gvisor.dev/
https://github.com/mirage/mirage
https://hub.docker.com/nginx
https://web.archive.org/web/20230816105820/https://docs.nvidia.com/grid/latest/pdf/grid-vgpu-user-guide.pdf
https://web.archive.org/web/20230816105820/https://docs.nvidia.com/grid/latest/pdf/grid-vgpu-user-guide.pdf
https://web.archive.org/web/20230816105820/https://docs.nvidia.com/grid/latest/pdf/grid-vgpu-user-guide.pdf
https://opencontainers.org
https://github.com/unikraft/app-redis
https://doi.org/10.1109/MC.2017.3641638
https://doi.org/10.1145/3381052.3381315
https://www.oakestra.io/
https://doi.org/10.1145/3624354.3630584
https://www.usenix.org/conference/atc23/presentation/bartolomeo
https://www.usenix.org/conference/atc23/presentation/bartolomeo

EdgeSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Giovanni Bartolomeo, Patrick Sabanic, Nitinder Mohan, Jörg Ott

(EdgeSys ’22). Association for Computing Machinery, New York, NY, USA, 19–24.
https://doi.org/10.1145/3517206.3526269

[17] Canonical. 2018. MicroK8s. https://microk8s.io. Retrieved May 24, 2022 from
https://microk8s.io

[18] Shichao Chen and Mengchu Zhou. 2021. Evolving container to unikernel for
edge computing and applications in process industry. Processes 9, 2 (2021), 351.

[19] CNCF. 2015. Kubernetes - Production-Grade Container Orchestration. Retrieved
May 24, 2022 from https://kubernetes.io

[20] CNCF. 2017. KubeEdge. https://github.com/kubeedge/kubeedge. Retrieved May
24, 2022 from https://kubeedge.io/en/

[21] Vittorio Cozzolino, Aaron Yi Ding, and Jörg Ott. 2017. Fades: Fine-grained
edge offloading with unikernels. In Proceedings of the Workshop on Hot Topics in
Container Networking and Networked Systems. 36–41.

[22] Jonathon Robert Cross. 2021. Analysis of Unikernels for Load Balancing and
Backend Service Deployment. (2021). https://jonathoncrossdissertation.s3.eu-
west-2.amazonaws.com/JC-DissertationDraft.pdf

[23] Niklas Eiling, Martin Kröning, Jonathan Klimt, Philipp Fensch, Stefan Lankes,
and Antonello Monti. 2023. GPU Acceleration in Unikernels Using Cricket
GPU Virtualization. In Proceedings of the SC ’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and Analysis (,
Denver, CO, USA,) (SC-W ’23). Association for Computing Machinery, New York,
NY, USA, 1588–1595. https://doi.org/10.1145/3624062.3624236

[24] Kubernetes Cluster Federation. 2023. KubeFed. https://github.com/kubernetes-
sigs/kubefed.

[25] Gaulthier Gain, Cyril Soldani, Felipe Huici, and Laurent Mathy. 2022. Want More
Unikernels? Inflate Them!. In Proceedings of the 13th Symposium on Cloud Comput-
ing (San Francisco, California) (SoCC ’22). Association for Computing Machinery,
New York, NY, USA, 510–525. https://doi.org/10.1145/3542929.3563473

[26] Tom Goethals, Merlijn Sebrechts, Ankita Atrey, Bruno Volckaert, and Filip
De Turck. 2018. Unikernels vs containers: An in-depth benchmarking study
in the context of microservice applications. 2018 IEEE 8th International Sympo-
sium on Cloud and Service Computing (SC2) (2018).

[27] gVisor. [n. d.]. gVisor Networking. https://gvisor.dev/docs/user_guide/
networking/. https://gvisor.dev/docs/user_guide/networking/

[28] Jin Heo, Ketan Bhardwaj, and Ada Gavrilovska. 2023. FleXR: A System Enabling
Flexibly Distributed Extended Reality. In Proceedings of the 14th Conference on
ACM Multimedia Systems (Vancouver, BC, Canada) (MMSys ’23). Association
for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/
3587819.3590966

[29] Vivek Jain, ShixiongQi, and K. K. Ramakrishnan. 2021. Fast Function Instantiation
with Alternate Virtualization Approaches. In 2021 IEEE International Symposium
on Local and Metropolitan Area Networks (LANMAN). 1–6. https://doi.org/10.
1109/LANMAN52105.2021.9478808

[30] Gayathri Karthick, Glenford Mapp, and Jon Crowcroft. 2023. Building an In-
telligent Edge Environment to Provide Essential Services for Smart Cities. In
Proceedings of the 18th Workshop on Mobility in the Evolving Internet Architecture.
13–18.

[31] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan Santhanam, Alexan-
der Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu, Ştefan Teodorescu, Costi
Răducanu, Cristian Banu, Laurent Mathy, Răzvan Deaconescu, Costin Raiciu,
and Felipe Huici. 2021. Unikraft: Fast, Specialized Unikernels the Easy Way. In
Proceedings of the Sixteenth European Conference on Computer Systems (Online
Event, United Kingdom) (EuroSys ’21). Association for Computing Machinery,
New York, NY, USA, 376–394. https://doi.org/10.1145/3447786.3456248

[32] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020. A Linux
in Unikernel Clothing. In Proceedings of the Fifteenth European Conference on
Computer Systems (Heraklion, Greece) (EuroSys ’20). Association for Computing
Machinery, New York, NY, USA, Article 11, 15 pages. https://doi.org/10.1145/
3342195.3387526

[33] Tytus Kurek. 2019. Unikernel Network Functions: A Journey Beyond the
Containers. IEEE Communications Magazine 57, 12 (2019), 15–19. https:
//doi.org/10.1109/MCOM.001.1900138

[34] Hugo Lefeuvre, Gaulthier Gain, Daniel Dinca, Alexander Jung, Simon Kuenzer,
Vlad-Andrei Badoiu, Razvan Deaconescu, Laurent Mathy, Costin Raiciu, Pierre
Olivier, et al. 2021. Unikraft and the coming of age of unikernels. login; The
Usenix Magazine (2021).

[35] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire,
David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon
Ludlam, Jon Crowcroft, and Ian Leslie. 2015. Jitsu: Just-In-Time Summoning of
Unikernels. In 12th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 15). USENIX Association, Oakland, CA, 559–573. https://www.
usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy

[36] Anil Madhavapeddy and David J. Scott. 2013. Unikernels: Rise of the Virtual
Library Operating System: What If All the Software Layers in a Virtual Appliance
Were Compiled within the Same Safe, High-Level Language Framework? Queue
11, 11 (dec 2013), 30–44. https://doi.org/10.1145/2557963.2566628

[37] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit
Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter

(and Safer) than Your Container. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles (Shanghai, China) (SOSP ’17). Association for Comput-
ing Machinery, New York, NY, USA, 218–233. https://doi.org/10.1145/3132747.
3132763

[38] Ilias Mavridis and Helen Karatza. 2023. Orchestrated sandboxed containers,
unikernels, and virtual machines for isolation-enhanced multitenant workloads
and serverless computing in cloud. Concurrency and Computation: Practice and
Experience 35, 11 (2023), e6365.

[39] Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Suzan Bayhan, Walter
Wong, and Jussi Kangasharju. 2020. Pruning Edge Research with Latency Shears
(HotNets ’20). Association for ComputingMachinery, NewYork, NY, USA, 182–189.
https://doi.org/10.1145/3422604.3425943

[40] Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding, Nicklas Beijar, and Jorg
Ott. 2018. Consolidate IoT Edge Computing with Lightweight Virtualization.
IEEE Network 32, 1 (2018), 102–111. https://doi.org/10.1109/MNET.2018.1700175

[41] Seyed Hossein Mortazavi, Mohammad Salehe, Carolina Simoes Gomes, Caleb
Phillips, and Eyal de Lara. 2017. Cloudpath: A Multi-Tier Cloud Computing
Framework. In ACM/IEEE SEC (San Jose, California) (SEC ’17). Association for
Computing Machinery, New York, NY, USA, Article 20, 13 pages. https://doi.
org/10.1145/3132211.3134464

[42] Georgios Ntoutsos and Anastassios Nanos. 2023. URUNC: A Unikernel Con-
tainer Runtime. https://osseu2023.sched.com/event/1OGgY/urunc-a-unikernel-
container-runtime-georgios-ntoutsos-anastassios-nanos-nubificus-ltd. Linux
Foundation Open Source Summit Europe.

[43] OpenContainers. [n. d.]. runC. https://github.com/opencontainers/runc. https:
//github.com/opencontainers/runc

[44] Ju Ren, Deyu Zhang, Shiwen He, Yaoxue Zhang, and Tao Li. 2019. A Survey
on End-Edge-Cloud Orchestrated Network Computing Paradigms: Transparent
Computing, Mobile Edge Computing, Fog Computing, and Cloudlet. ACM Com-
put. Surv. 52, 6, Article 125 (oct 2019), 36 pages. https://doi.org/10.1145/3362031

[45] W. Shi and S. Dustdar. 2016. The Promise of Edge Computing. IEEE Computer
49, 5 (2016), 78–81. https://doi.org/10.1109/MC.2016.145

[46] Hajime Tazaki, Akira Moroo, Yohei Kuga, and Ryo Nakamura. 2021. How to
design a library OS for practical containers?. In Proceedings of the 17th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(Virtual, USA) (VEE 2021). Association for Computing Machinery, New York, NY,
USA, 15–28. https://doi.org/10.1145/3453933.3454011

[47] Unikraft. 2022. Integrations with Container Runtimes. https://unikraft.org/docs/
getting-started/integrations/container-runtimes

[48] Unikraft. 2023. Kraftkit. https://github.com/unikraft/kraftkit.
[49] Vincent van Rijn and Jan S. Rellermeyer. 2021. A fresh look at the architecture

and performance of contemporary isolation platforms. In Proceedings of the
22nd International Middleware Conference (Québec city, Canada) (Middleware ’21).
Association for Computing Machinery, New York, NY, USA, 323–335. https:
//doi.org/10.1145/3464298.3493404

[50] VMware. 2023. RabbitMQ. https://www.rabbitmq.com.
[51] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael

Swift. 2018. Peeking Behind the Curtains of Serverless Platforms. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA,
133–146. https://www.usenix.org/conference/atc18/presentation/wang-liang

[52] Dan Williams and Ricardo Koller. 2016. Unikernel Monitors: Extending Min-
imalism Outside of the Box. In 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16). USENIX Association, Denver, CO. https://www.usenix.
org/conference/hotcloud16/workshop-program/presentation/williams

[53] Syed Yazdani, Naeem Ramzan, and Pierre Olivier. 2023. Enhancing Edge Com-
puting with Unikernels in 6G Networks. In 2023 IEEE 34th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). 1–6.
https://doi.org/10.1109/PIMRC56721.2023.10293911

[54] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun
Li. 2017. Lavea: Latency-aware video analytics on edge computing platform. In
ACM/IEEE SEC (San Jose, California) (SEC ’17). ACM, New York, NY, USA, Article
15, 13 pages. https://doi.org/10.1145/3132211.3134459

[55] Wenxiao Zhang, Bo Han, and Pan Hui. 2018. Jaguar: Low Latency Mobile
Augmented Reality with Flexible Tracking. In Proceedings of the 26th ACM
International Conference on Multimedia (Seoul, Republic of Korea) (MM ’18).
Association for Computing Machinery, New York, NY, USA, 355–363. https:
//doi.org/10.1145/3240508.3240561

https://doi.org/10.1145/3517206.3526269
https://microk8s.io
https://microk8s.io
https://kubernetes.io
https://github.com/kubeedge/kubeedge
https://kubeedge.io/en/
https://jonathoncrossdissertation.s3.eu-west-2.amazonaws.com/JC-DissertationDraft.pdf
https://jonathoncrossdissertation.s3.eu-west-2.amazonaws.com/JC-DissertationDraft.pdf
https://doi.org/10.1145/3624062.3624236
https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://doi.org/10.1145/3542929.3563473
https://gvisor.dev/docs/user_guide/networking/
https://gvisor.dev/docs/user_guide/networking/
https://gvisor.dev/docs/user_guide/networking/
https://doi.org/10.1145/3587819.3590966
https://doi.org/10.1145/3587819.3590966
https://doi.org/10.1109/LANMAN52105.2021.9478808
https://doi.org/10.1109/LANMAN52105.2021.9478808
https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/3342195.3387526
https://doi.org/10.1145/3342195.3387526
https://doi.org/10.1109/MCOM.001.1900138
https://doi.org/10.1109/MCOM.001.1900138
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/madhavapeddy
https://doi.org/10.1145/2557963.2566628
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/3422604.3425943
https://doi.org/10.1109/MNET.2018.1700175
https://doi.org/10.1145/3132211.3134464
https://doi.org/10.1145/3132211.3134464
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://doi.org/10.1145/3362031
https://doi.org/10.1109/MC.2016.145
https://doi.org/10.1145/3453933.3454011
https://unikraft.org/docs/getting-started/integrations/container-runtimes
https://unikraft.org/docs/getting-started/integrations/container-runtimes
https://github.com/unikraft/kraftkit
https://doi.org/10.1145/3464298.3493404
https://doi.org/10.1145/3464298.3493404
https://www.rabbitmq.com
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://doi.org/10.1109/PIMRC56721.2023.10293911
https://doi.org/10.1145/3132211.3134459
https://doi.org/10.1145/3240508.3240561
https://doi.org/10.1145/3240508.3240561

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Orchestration Support
	3.1 Hybrid Service Deployment
	3.2 Resource Management and Scheduling
	3.3 Virtualization Hot-Swapping
	3.4 Inter-Service Networking

	4 Application Performance.
	4.1 Hybrid Edge/IoT Application
	4.2 Hybrid Augmented Reality Pipeline

	5 Discussion and Future Work
	References

