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Abstract
Thanks to OCI standardization, containers now describe a
complete end-to-end environment for packaging, distribut-
ing, and deploying software and its dependencies. Unfortu-
nately, the complexity of modern applications creates use
cases that are not yet supported by this technology. For exam-
ple, packagingmachine learningmodel weights in containers
requires extensive build times, reduces flexibility, and forces
developers to seek alternative, custom solutions. Another
example is platform-specific drivers and binaries, which are
often included in container fat images but involve cache in-
validations for every minor change. In our work, we extend
the container layered structure with a new two-dimensional
filesystem layer type, specifically designed for efficient han-
dling of large data. The proposed layer type allows highly
parallelized image builds and fine-grained layer caching,
while also providing a mechanism for on-demand partitions.
Such partitions enable developers to request a subset of the
image, e.g., containing only a portion of a machine learning
model or a specific set of drivers for a given architecture. The
proposed implementation is fully OCI-compliant, allowing
distribution of such customized images to any container run-
time with no additional effort. Our implementation, called
2DFS, achieves 56x faster build times and 25x better caching
efficiency compared to Docker, while providing on-demand
image partitioning with no overhead.

1 Background and Motivation
Containers have emerged as a de facto standard for packag-
ing applications and dependencies and have seen widespread
adoption in the industry. Furthermore, thanks to Open Con-
tainer Initiative (OCI) standardization [6], the creation, exe-
cution, and sharing of container images has become more
streamlined. Even in the context of machine learning (ML)
applications, containers have become the preferred method
for packaging and deploying MLmodels [2]. With the advent
of split computing, models can be partitioned on demand
and distirbuted across different devices, calling for a flexible
way to package and distributed the model weigths [4]. Un-
fortunately, frequent model re-training can led to frequent
re-builds of the container images, while in split comput-
ing scenarios, multiple images must be built, one for each
split. Additionally, it is common practice to store applica-
tion libraries’ binaries and drivers in container images [1, 7],
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Figure 1. 2DFS image distribution workflow.

making them self-contained and portable across different
environments, but resulting in severely bloated images [8].
Unfortunately, dependencies download at runtime leads to in-
creased startup times and bandwidth usage. While solutions
using dynamic volumes mounts require additional engineer-
ing efforts, especially at the edge where object stores are not
widely available. State of the art build systems, like Build-
Kit [5], are optimized for efficient computation of container
changesets but are not meant for handling large independent
files. On the other hand, by addressing content by digest,
container registries offer an excellent mechanism for object
retrieval. In our work, we extend the OCI image format to
recycle the well-enstablished container image registries to
distribute not only code and dependencies but also binaries,
model parameters, and any large file without affecting the
complexity of the CI/CD pipelines. By building a special-
ized two-dimensional container layer, the ML model splits,
drivers and dependencies can be independently cached. Reg-
istries can then provide each client with image partitions,
including only the necessary files.

2 2DFS High Level Design
This work presents the initial implementation efforts to real-
ize 2DFS, a two-dimensional filesystem build and distribution
framework for containers. Essentially, 2DFS is an extension of
the conventional layered filesystem used in container images.
We introduce a new layer type called 2dfs.field. A field
is a sparse hash-pointer matrix of allotments representing
a self-contained, non-overlapping, and independent filesys-
tem space. Each one of these allotments links one or more
files. As shown in fig. 1, the field datastructure is appended
to the layers list. As this is a sparse matrix, each allotment
can either point to a file or be empty. The two-dimensional
data structure has been selected to simplify the definition of
partitions. In fact, we propose a partitioning operation that
can select subsets of the field, allowing on-demand retrieval
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of the data. A field, expressed by rows and columns, can
be partitioned drawing a sub-field. E.g., in fig. 1, the first
worker node is requesting only the allotments from <row 1,
column 0> to <row 2, column 1> of the image. Partitions
can be requested by appending the −−x1.y1.x2.y2 opera-
tor to the image tag as shown in the figure. All the OCI+2DFS
compliant registries must support this operation.
Image partitioning is performed by flattening the allot-

ments into regular OCI layers, ensuring compatibility of the
downloaded images with any OCI-compliant runtime, such
as Docker. The 2DFS builder genearates the allotments as
non-overlapping independent regions, making the flattening
operation performed by the registries just an image index
manipulation operation, extremely lightweight and efficient.

A 2dfs.field structure is generated by the 2DFS builder.
A builder uses a base OCI image, and a field descriptor
file, both provided by the developer, to create an extended
OCI+2DFS image which can be uploaded to any compliant
registry. A field descriptor file, called 2dfs.json, contains
the list of allotments, their position in the field (row and col-
umn), and the source files to be included in each allotment.
Essentially, instead of including the files with the traditional
Dockerfile ADD command, the developer specifies the files
to be included in the allotments in the 2dfs.json file. The
builder exploits the allotment independence to parallelize
the build process, significantly reducing the build time.

3 Early Results
Weevaluate 2DFS’s performance across build time and caching
efficiency, comparing it to Docker, themost popular container-
building tool [3]. Because 2DFS uses a novel layering ap-
proach, we often needed multiple Docker images to replicate
the functionality of a single 2DFS image partition. For in-
stance, a three-partition 2DFS image required three separate
Docker images for comparison. Our evaluation uses Mo-
bileNetV2 (MNv2L), ResNet50 (RN50) and EfficientNet-V2L
(ENv2L) models. We apply split-computing techniques to
these models, generating multiple splits for each model wich
wemap to different allotments. We compare the performance
of 2DFS while varying the amount of splits of a model.
Figure 2 shows the build time of MNv2L with 10 splits.

While for 2DFS we only need to build a single image with
all the splits as allotments, for Docker we build 10 images,
one for each model split. The average build time difference
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Figure 4. Build time after model updates with image caching.

shows that 2DFS build is 55.9× faster. 2DFS high parallel
build and reduced filesystem copy operations, result in faster
build times. We omit the total build time because it is not
comparable across the two approaches.

Figure 3 shows the retrieval time for ENv2L and RN50 split
models from a registry. For each model partition, we com-
pare the download time of a custom pre-built Docker image
against a 2DFS image that is partitioned on-demand. We ob-
serve that the download time for the partitioned images is
comparable to the pre-built images, with an average over-
head of 20𝑚𝑠 . The partitioning and flattening operation at
the registry introduces minimal overhead.
Figure 4 shows the re-build time caused by changes in

a container layer. On the left we increasingly update the
layers from the top to the bottom, while on the right we
update the layers from the bottom (worst case scenario for
Docker). We update from 1 to 100% of the layers in the image.
On average 2DFS re-build time is 25× faster, with a peak
of 75× faster build time for the bottom-up scenario. Files
updates in 2DFS do not trigger a full cache invalidation but
rather the reconstruction of the local allotment. The field
reconstruction will recycle the cached allotments resulting
in better performance and improve cache utilization.
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